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Abstract

This paper reports on a six-axis vibration isolator for space applications. It is divided into three parts. The first part
recalls the principles of active isolation and summarizes the main theoretical results for multiple-axis decentralized control
based on force feedback. The second part discusses the technology and describes the evolution of the design over the 5
years of this project. The third part is devoted to the identification of the transmissibility matrix and the performance
evaluation. Zero-gravity tests in parabolic flight are reported. The isolator is proved efficient in a frequency band between 5
and 400 Hz, with a maximum attenuation of —40 dB between 50 and 200 Hz.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Many applications in precision engineering would be impossible without a careful vibration isolation of the
process. Examples are wafer stepper lithography machines, atomic force microscopes, space telescopes and
interferometers, laser communication systems, etc. This paper is concerned with the development of a
vibration isolation interface for space applications [1,2], to protect the payload from the jitter induced by the
various disturbance sources, such as the reaction wheel assembly, solar array drives, cryocoolers, etc. The
isolator attenuates the vibration transmission above some corner frequency, while allowing the low-frequency
attitude control torque to be transmitted.

Passive isolation [3] is appropriate for many applications, it generally consists of one or several stages of
mass—spring—damper systems introduced in the propagation path, whose parameters are adjusted to achieve
the desired corner frequency and a reasonable compromise between the amplification at resonance and the
high-frequency attenuation. Passive damping is necessary to limit the amplification at resonance, but it tends
to reduce the high-frequency attenuation of the isolation system. Active isolation has been introduced to
resolve this conflict, allowing to achieve simultaneously a low amplification at resonance and a large
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attenuation at high frequency. The well-known “‘sky-hook™ damper [4,5] is a single-axis interface which, if
inserted between two rigid bodies, provides a —40dB/decade attenuation rate at high frequency and a
controllable overshoot at resonance. When inserted between rigid bodies, the sky-hook damper may be
implemented with acceleration (or velocity) feedback, or equivalently with force feedback. However, when
inserted between two flexible structures, as is likely in space applications, it turns out that the force feedback
implementation enjoys guaranteed stability properties that acceleration feedback lacks.

To fully isolate two rigid bodies with respect to each other, six judiciously placed single-axis isolators are
needed. They can be controlled in a centralized or decentralized manner. For a number of space applications,
generic multi-purpose isolators have been developed with a standard Gough—Stewart platform architecture
[6-12], in which every leg of the platform consists of a single-axis isolator, connected to the base plates by
spherical joints.

This paper considers only the decentralized feedback control approach which has attractive robustness
properties and is shown to produce impressive performance, provided the mechanical design is properly done.
More sophisticated control architecture may be considered [11], but generally at the price of reduced
robustness. If the disturbance can be measured somewhere along its propagation path, a feedforward
approach can be considered; this approach was followed in Ref. [6]. Finally, the isolation control
loop discussed here can be imbedded in a global precision pointing control system; this topic is discussed in
Refs. [12-15].

2. Sky-hook damper

The transmissibility of a single-axis passive linear oscillator is given by

X(s) 1+ 2&s/w,
Xa(s) 14 2Es/w, + (s/w,)

where s is the Laplace variable, w, is the corner frequency and ¢ the fraction of critical damping. The corner
frequency, w, = \/k/M, is the natural frequency of the system when the disturbance source is blocked. The
amplitude of the corresponding frequency response function (FRF), obtained for s = jw, is represented in Fig.
1 for various values of &. All the curves are larger than 1 for w <+/2w,, and smaller than 1 for w>+/2w,. Thus,
the isolator attenuates the disturbance beyond the critical frequency ~/2w,. For ¢ =0, the high-frequency
behavior of Eq. (1) approaches ~1/s?, which means an asymptotic decay rate of —40 dB/decade, while very
large amplitudes occur near the corner frequency w,. The damping reduces the amplitude at all frequencies
below +2w,, and in particular at the resonance w,, but it increases the amplitude at all frequencies above
V2w, reducing the asymptotic behavior to ~1/s, that is an asymptotic decay rate of —20dB/decade.
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Fig. 1. Transmissibility of the single-axis passive linear isolator, for various values of damping.
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The sky-hook damper concept is a feedback control strategy which allows reduction of the transmissibility
amplitude at low frequency (below and near the corner frequency) without deteriorating its high-frequency
behavior, and keeping an asymptotic decay rate of —40dB/decade. The strategy is illustrated in Fig. 2. The
isolator consists of a spring (no damper) and a force actuator F, acting in parallel; a sensor placed on the
payload (accelerometer or geophone) supplies its absolute velocity, sX.(s). The feedback control strategy
consists of generating a control force proportional to the absolute velocity of the payload, F, = —gsX .(s).
From the payload point of view, this is equivalent to connecting it to a fixed point in space [labelled sky
in Fig. 2(b)] with a viscous damper of constant g.

Since the force applied to a rigid body is proportional to its acceleration, the acceleration feedback
(or velocity feedback) may be replaced by a feedback based on a force sensor measuring the total interface
force, F = Ms>X .(s) [Fig. 2(c)]. The two control configurations are equivalent because they have the same
open-loop transfer function (except for a constant factor M). As the gain g increases, the closed-loop poles
move on a circle (Fig. 3). The transmissibility of the force feedback isolator reads

X(s) [M, M !
Y0 [?s +?gs+1} , 2)

which exhibits an attenuation rate of —40 dB/decade at high frequency. The feedback gain can be adjusted to
achieve critical damping, meaning no amplification at the corner frequency.

If the two structures connected by the single-axis isolator are flexible, the force feedback and acceleration
feedback implementations are no longer equivalent, and the corresponding open-loop transfer functions
exhibit different pole/zero patterns. It has been shown that if two arbitrary flexible, undamped structures are
connected with a single-axis soft isolator with force feedback (Fig. 4), the poles and zeros in the open-loop transfer
Sfunction (F/F,) alternate on the imaginary axis [17,18]. This property is maintained for lightly damped
structures, except that the poles and zeros are slightly in the left half-plane instead of being on the imaginary

axis. This guarantees that the feedback law F, = —(g/s)F will be stable. There is no such guarantee for
‘rd — Lc

F,=-9sx.
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Fig. 2. (a) Single-axis soft isolator with velocity feedback, (b) equivalent sky-hook damper and (c) force feedback isolator.
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Fig. 3. Root locus of the force feedback isolator connecting two rigid bodies.
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Fig. 4. Two arbitrary flexible structures connected by a single-axis soft isolator with force feedback.

acceleration feedback, and one can easily show that instability can occur when the corner frequency of the
suspension interferes with the flexible modes. Based on this result, we have opted for a force feedback
implementation.

3. Six-axis isolator

The single-axis isolator considered in the foregoing section combines an attenuation rate of —40dB/decade
with a tunable overshoot at resonance; critical damping can be achieved through proper selection of the
feedback gain g. As mentioned in the previous section, if a force feedback implementation is used, the
sky-hook damper has guaranteed stability, even if the structures to be isolated are flexible, and if the flexible
modes and the suspension modes overlap. To fully isolate two rigid bodies with respect to each other, six
single-axis isolators must be located judiciously. For simplicity reasons, we take the view that the same isolator
is used along every axis, and that they are controlled in a decentralized manner with the same gain. Two new
problems arise: (i) The system does not have one, but six suspension modes, with generally different
frequencies, and it will not be possible to achieve critical damping simultaneously for all suspension modes
with a single gain. (ii) Every single-axis isolator should be mounted on spherical joints, to allow the motion
orthogonal to its own axis. However, backlash free spherical joints are difficult to realize and, in precision
engineering, they are replaced by elastic joints which have a small rotary stiffness. Although small, the residual
rotary stiffness has a significant effect on the closed-loop performance of the suspension, because it determines
the transmission zeros, which are the asymptotic solution of the eigenvalue problem as g — oo.

An attractive architecture for a generic multi-purpose six-axis isolator is that of a Gough—Stewart platform
[16] (Fig. 5), and several examples of such systems have been developed for space applications [6—12]. The
system consists of 6 identical active struts connected to the end plates by spherical joints. Most existing
examples of this type, including this one, are based on a cubic architecture [6], where the active struts are
arranged in a mutually orthogonal configuration connecting the corners of a cube (Fig. 6). This topology
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Fig. 6. Geometry (a) and coordinate systems (b) for the cubic hexapod isolator. Numbers in bold indicate the struts.

provides a uniform control capability and a uniform stiffness in all directions, and it minimizes the cross-
coupling amongst actuators and sensors of different legs (being orthogonal to each other). Fig. 6 depicts the
geometry of the hexapod and the numbering of the nodes and the struts; the base frame {x;,y,, 25} has its
origin at node 0; the payload frame {x,, y,, z,} has its origin at the geometrical center of the hexapod, noted 8,
and z} is perpendicular to the payload plate; the orientation of X, and y, is shown in Fig. 6. If one neglects the
flexibility of the struts and the bending stiffness of the flexible joints connecting it to the base and payload
plates, the equations of motion can be obtained from rigid body dynamics.

Assume that the base plate is fixed and denote by B the projection matrix mapping the forces
acting along the strut axes into the generalized payload plate forces f conjugate to the payload plate
coordinates. One has

f = B(u — kq), (3)

where f = (f.f.f., My, M;,, M )T are the generalized forces applied by the legs, expressed in the payload
axes, u = (uy,...,ug)" is a vector of active control forces in struts 1-6, and q = (¢, . ..,¢)" is a vector of leg
extensions. In Eq. (3), k is the stiffness of the suspension spring, assumed the same for all legs. u — kq is the
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total force in the leg, sum of the control force u and the elastic restoring force in the spring. From the principle
of virtual work, the leg extensions and the small displacements and rotations of the payload plate,
X = (Xp> Yy Zr, 01, 0, 0.)7, satisfy

q=B"x. 4)
Substituting in Eq. (3) and writing the dynamic equilibrium on the payload, one finds
Mx = Bu — kBBx

or
Mx + kBBTx = Bu, (5)
where M is the 6 x 6 mass matrix of the payload
M — [ml 0} ’ 6)
0 J

m is the mass and J the inertia tensor of the payload in the payload frame. In Eq. (5), kBB' is the mechanical
stiffness matrix of the suspension, associated with the axial stiffness of the suspension struts. In practice,
however, the spherical joints are also compliant with stiffness K, (in this case, they can be viewed as flexible
universal joints: low bending stiffness, high axial, shear and torsion stiffness, see below). The total stiffness
matrix is kBB 4+ K, and Eq. (5) becomes

MXx + (kBB + K,)x = Bu. (7
4. Decentralized control
In order to enjoy the robustness properties discussed at the beginning of the paper, the control strategy

consists of a decentralized sky-hook damper based on force feedback. The isolator is equipped with 6 force
sensors measuring the total axial force in the various legs; the output equation is

y=u—kq=u—kB'x, (®)
where y = (y,,...,¥)" is a vector of six force sensor outputs. Using a decentralized integral force feedback
with the same gain g for every loop, the controller equation reads
g

u=Hsy=—_y )

(g is a scalar in this case). Combining Eqgs. (8) and (9), one obtains
u=—L iBTx (10)

s+g

and, substituting in Eq. (7), the closed-loop characteristic equation reads

M + (kBBT + K,)x = ﬁkBBTx. (11)

4.1. Perfect joints
First, consider the case of perfect spherical joints, K, = 0. In this case, Eq. (11) becomes
Ms® + —— (kBB |x = 0. (12)
s+g
The free suspension modes are the solutions of Eq. (12) for g = 0. If one denotes @ the matrix of the

suspension modes, normalized in such a way that ®'M® = I, ®'(kBB")® = Q* = diag(Q?), Eq. (12) can be
transformed into modal coordinates according to x = ®z. In modal coordinates, the characteristic (12) is
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reduced to a set of decoupled equations

2 S o2
S+ —0 =0, 13
s+ stg (13)
l+g———35=0, 14
gSZ + le ( )
i=1,...,6. The corresponding root locus is shown in Fig. 7(a). This is identical to Fig. 3 for a single-axis

isolator; however, unless the six natural frequencies of the suspension modes are identical, a given value of the
gain g leads to different pole locations for the various modes, and it is not possible to achieve the same
damping for all modes. Better, more balanced performance will be achieved if Q; to Q¢ are close to each other.
Thus, the payload should be located in such a way that the modal spread Q¢/Q; is minimized [7].

4.2. Real joints

Let us investigate the influence of the parasitic stiffness K, introduced by the flexible joints. In this case, the
closed-loop characteristic equation becomes

Ms* + K, + ﬁ(kBBT) x = 0. (15)

The asymptotic solutions for high gain (g — o0) are no longer at the origin s = 0, but satisfy the eigenvalue
problem

(Ms®> + K,)x = 0. (16)

The solutions to Eq. (16) are the natural frequencies, z;, of the system when the axial stiffness of the strut
approaches zero. This shift of the zeros from the origin to finite frequencies, Fig. 7(b), has a substantial
influence on the practical performance of the isolator, and motivates careful design of the joints.

The combined effect of the modal spread and the joint stiffness is illustrated in Fig. 8. There are only four
different loci because of the symmetry of the system. The bullets correspond to the closed-loop poles for a
fixed value of g. The sensitivity of the closed-loop poles to changes in g varies from loci to loci. The impact of
this on the transmissibility is examined below.

Before closing this section, it is appropriate to mention two additional factors which tend to reduce the
closed-loop performance of the isolator:

Ay

I8

D jzi

N

(@) (b)

Fig. 7. (a) Root locus of the suspension modes of the perfect six-axis isolator (K, = 0) with decentralized integral force feedback and (b)
effect of the stiffness of the flexible joints (K, #0).
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Fig. 8. Typical root locus of a complete isolation system with real joints.

(1) To avoid saturation when using the integral controller (9), the addition of a high-pass filter is required.
This adversely impacts the performance of the system. However, the detrimental effect of the high-pass
filter can be minimized, if its corner frequency is prescribed well below the frequency of the lowest
suspension mode.

(i1) The analysis of this section was based on the assumption of massless and perfectly rigid struts, except in the
axial direction. In practice, however, the legs have their own local dynamics which interact with those of the
isolator and significantly impact the transmissibility in the vicinity of the resonance frequency of the local
modes and beyond. Maximizing the natural frequency of the local modes of the legs is a major challenge in the
design of a six-axis isolator with broadband isolation capability. The leg design is discussed below.

5. Leg design

Fig. 9 shows two conceptual designs which have been considered successively during this project. In the first
design, Fig. 9(a), the axial compliance is due to two parallel membranes mounted inside a cylinder, supporting
the permanent magnet of the voice coil actuator. The stinger is attached to the center of the membranes,
supporting the coil at one end, and connecting to the force sensor at the other end. Two flexible joints are used
to connect the leg, respectively to the base plate and to the payload plate. The various components were
optimized to maximize the performance; this design was built and tested, including in parabolic flight in 2002
[19]. The isolator works in the frequency band 5-100 Hz with a maximum attenuation of about 20 dB near
50 Hz. However, this leg design was not able to pass the launch vibration qualification tests, due to excessive
stresses in the flexible joints. This motivated the second design, with the objective of reducing the sprung mass
of the leg assembly (Fig. 9b).

In the second design, the permanent magnet, the heaviest moving part in the previous design, has been
relocated from the leg to the base plate. In this design, a single membrane performs the functions of both the
spring and the flexible joint on the base plate side. The coil axis is allowed to rotate with respect to the magnet
axis, which necessitates an increase of the gap between the coil and the magnet. The stinger, which is of carbon
fibre construction, is attached to the center of the membrane. It supports the voice coil at one end, and
attaches to the force sensor at the other end, which in turn is connected to the payload plate by a single flexible
joint. This design reduces the sprung mass attached to the membrane and flexible tip by a factor of 8. This
configuration successfully passed the launch vibration qualification tests. The natural frequency of the local
mode is also raised drastically, leading to a dramatic improvement in performance. The redesigned isolator
works in the frequency band 5400 Hz with a maximum attenuation of about 40dB near 100 Hz (Fig. 14). This
considerable improvement has been achieved by mechanical design alone, without changing the control law (!).
Fig. 10 shows an exploded view of the leg of the second design; some details of the design follow.
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Fig. 9. (a) Design # 1: 2 membranes, 2 flexible joints, magnet in the leg and (b) design # 2: 1 membrane, 1 flexible joint, magnet in the base
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Fig. 10. Exploded view of the leg (Design # 2).

5.1. Membrane

The membranes are made of Beryllium Copper alloy, a non-magnetic material with high yield stress. A thin
film coating was added to avoid corrosion due to metal-metal interaction with the aluminium support. The
membrane geometry was optimized to (i) maximize the ratio between the radial stiffness and longitudinal
stiffness, (i) to minimize variation in radial stiffness with respect to longitudinal extension of the leg, and to
(iii) minimize stress concentration to improve the fatigue life. Fig. 11 shows various membrane geometries
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which have been tested during the course of this project. The finite element (FE) analysis and Guyan reduction
was performed to determine the various spring constants required for the global model of the platform. Fig. 12
shows typical results of nonlinear FE calculations of the variation of axial and radial stiffness with respect to
axial extension of the strut.

5.2. Voice coil

The magnet assembly used in this project is a ferromagnetic core radial polarity toroid manufactured by
BEI Kimco. The gap between the coil and the magnet is large enough to allow the rotation of the stinger by
1.5°. The coil consists of 201 turns wound on a tubular plastic core (PEEK). A plastic core is used to avoid
detrimental passive damping which a metal core would introduce, with the consequences discussed earlier on
the asymptotic decay rate of the transmissibility. The voice coil maximum force is 2.7 N; the stroke is

+/—0.7 mm.
(a (b) ©
(d)
Fig. 11. Various membrane geometries and FE mesh.
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Fig. 12. Axial and lateral stiffness as a function of the leg extension.
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5.3. Stinger

To minimize weight, the stinger consists of a carbon fibre epoxy tube with aluminium connections. In order to
limit damage to the membrane due to excessive stinger axial displacement, it is provided with mechanical stops.

5.4. Flexible joint

The impact of the flexible joints on the performance of the platform has been stressed earlier in the paper.
Ideally, the joint should approximate a spherical joint; that is, it should exhibit high axial and shear stiffness,
and low bending and torsional stiffness. On the other hand, the joints also play a vital role in the mechanical
integrity of the system, which calls for strong, and consequently stiff, joints. These conflicting requirements
have led to extensive numerical studies and prototyping, as reported in Ref. [19]. Eventually, we opted for the
design of Fig. 13, manufactured by electro-erosion. The material selected was NiTiNOL alloy, which was
chosen for its low Young modulus, and high yield strength, respectively, ~60 GPa and 900—1900 MPa in this
case. We also expected to benefit from additional properties of super-elasticity which, we hoped, would add
damping to the local transverse modes of the strut. The actual joints did not exhibit the desired damping due
to unknown factors. In a later version developed at Micromega Dynamics on behalf of ESA/ESTEC,
Titanium was used instead of NiTiNOL, due to the availability of more reliable material data. The joint profile
was studied numerically with FE and a Guyan reduction performed, to determine the 12 x 12 stiffness matrix
of the joint.

5.5. Model of the isolator

The reduced models of the various components have been combined to arrive at a leg model with less than
100 dof. Although the model is relatively low order, it is accurate over a frequency band extending to about
500 Hz. This is a sufficient model bandwidth to evaluate the isolation performance of the platform. All FE
models have been developed using SAMCEF. The dynamic model of the platform has been transformed into
state-space and coupled with a control model using MATLAB/SIMULINK. The coupled model has been
used extensively to design the components, optimize their shape and size, and tune the controller gain. It was
also used to predict the transmissibility matrix. Fig. 14 shows a numerical simulation of the experiment
described in the next section. The vertical transmissibility with control exhibits a small overshoot due to the
inclusion of a high-pass filter with 0.5 Hz corner frequency, residual stiffness of the spherical joints, and the
relatively high modal spread of the test article, Q¢/Q; = 2.2. The isolation performance achieved, near 100 Hz,
is —40dB, and the first local modes occur above 400 Hz.

F.E. mesh
(Samcef field)

@40

Fig. 13. Flexible joint used in this project.
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Fig. 14. Numerical prediction using MATLAB/SIMULINK of the transmissibility in the vertical direction.

6. Experiment
6.1. Experimental set-up

The full platform used to obtain the experimental results presented in this section is shown in Fig. 15 (design
# 2). In order to measure the six-axis transmissibility, it is equipped with 12 calibrated accelerometers, placed
at well-defined locations on the base and payload plates, so that the payload plates’ motion can be deduced
from their collecting outputs. The platform is placed on a shaking table consisting of a rigid slab mounted on
springs, and excited by an inertial shaker with adjustable orientation (Fig. 16). In addition, two high-precision
accelerometers are placed on each of the two plates, to monitor their vertical motion.

6.2. Transmissibility

Let xg = (x41, Xa2, Xa3, Xd4, xd5,xd6)T and X, = (X¢1, Xe2, Xe3, Xeds X5, XCG)T be vectors of sensor displacements,
respectively, on the base plate and the payload plate, and let X;(w) and X .(w) be their Fourier transforms. The
relationship between the readings at the sensors on the payload plate and the base plate can be expressed using
the frequency-dependent transmissibility matrix, T(w), as follows:

Ty Ty ... Ty
Ty Tn ... T

Xc(w) = T(@)Xi(w), T(w)= , (17)
T Te ... Tg

T;j(w) represents the displacement at sensor i of the payload for an imposed displacement of the base plate
Xi(w) =e;, wheree;=(0 0 ... 1 ... 0)'. The transmissibility matrix is thus dependent on the choice and
orientation of the sensors. Next, assume that the inputs and outputs are transformed according to

Xi(@) = TiXq(w), Xi(w) =TX (), (18)
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Fig. 15. View of the isolator.
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Fig. 16. Test set-up for the measurement of the transmissibility matrix.

where T, and T, are regular constant matrices defining geometric transformations. Eq. (17) becomes
Xi() = T.T(@)T; ' Xj(), (19)
X)(w), and X(w) are the Fourier transforms of the generalized coordinates. The transmissibility matrix
between the generalized coordinates reads:
T* () = T, T(0)T; . (20)

In order that T*(w) be the matrix generalization of scalar transmissibility used earlier in this paper, one must
have T*(w) = I when both plates have identical motions, Xj(w) = X’ (w). This is achieved if X j(w) and X’ (w)
describe the motion of two reference frames located at the same point in space and with the same orientation.
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X’ describes the motion of the frame attached rigidly to the base plate, and X that of the frame attached to
payload plate. The reference frame located at the geometric center O of the platform, Fig. 16, is a natural
choice and has been selected in this study. Thus, the generalized coordinates X} = (x4, V4, Za, Oxa, 0,4, 0-4) are
the translations and rotations of the reference frame when it is attached to the base plate, and x} =
(Xes Ver Zes Oxe, 0)¢, 0=¢) are the translations and rotations of the reference frame when it is attached to the
payload plate. With this choice, column i of the transmissibility matrix T*(w) represents the payload harmonic
response amplitude, to the base plate’s ith generalized displacement input, X’;(w) = e;, i.e., a pure translation
or a pure rotation of the base plate in a given direction x, y or z of the reference frame.

6.3. Frobenius norm

The transmissibility matrix is a 6 x 6 matrix. To interpret the results and assess the performance of the
isolator, it is convenient to define a scalar indicator, with a meaning similar to that of the transmissibility of a
single-axis isolator. This provides a measure of the isolation capability of the isolator, for every frequency. The
Frobenius norm, defined as

6 6 1/2
IWMWGmﬂ@WﬂW@<ZZWWW>, 1)

i=1 j=1

where ()" stands for the Hermitian (i.e., conjugate transpose) of (), is often used for this purpose [7]. This
norm can be interpreted as follows: From Parseval’s theorem,

oo 1 o0
/ xIx.dt = — / X ()X () dw
oo 21 J_o

= % [ : Trace[X.(w)X (o) dw
_ % [ : Trace[T(@)X () Xa(@) T(w)H] doo. 22)
By definition of the energy spectral density, we have
S =5 EIX @) (3)

Assuming that the motion of the base plate is such that the components of X;(w) are uncorrelated with unit
energy spectral density

- EXu(@)X ()] = 1 24)
T
and Eq. (22) becomes

/ ” E[x'x/]dt = / ” Trace[T(w);—nE[Xd(w)Xd(w)H]T(w)H] dow

= / ” Trace[T(w)T(w)"]dw = / ” I T(w)]|? deo. (25)

Thus, || T(w)||? represents the frequency distribution of the energy of the payload plate, when the six inputs of the
base plate are uncorrelated signals with unity energy spectral density (uniform over all frequencies).

In the absence of an isolator, the two plates would be rigidly linked, and with our choice of coordinates, we
have x¥=xj. In this particular case, the transmissibility matrix T*(w) is the identity matrix and
IT*(w)| = +/6. Thus, to obtain a performance metric comparable to the transmissibility of a one-axis
isolator, one must consider

I'(w) = | T*(@)Il/ V6. (26)

The procedure employed to experimentally identify the transmissibility matrix is discussed below.
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6.4. Identification of the transmissibility

Consider the experimental set-up of Fig. 16. The base plate is attached to the shaking table to form a rigid
body; the payload plate is also a rigid body. In order to identify the transmissibility matrix, a force input F; is
applied to the shaking table, using a rigidly attached inertial actuator. The shaker position and orientation can
be adjusted to change the disturbance force F,;. The current I; that drives the shaker is recorded during the
experiments, but F; is not measured. The readings from the six accelerometers on each body are X.(w) and
X4(w). They can be transformed into the generalized coordinates X (w) and Xj(w) using Eq. (18). The
causality flow in the system is:

I, =F; =X, = X,

A minimum of six independent measurements are conducted with six independent shaker orientations. Let 7
(i=1,...,6) be the current input, and X, and X.; be the vectors of sensor readings of the six accelerometers,
respectively, on the base plate and on the payload plate, for the corresponding shaker orientation. The
corresponding FRF vectors are

Xai(w)

Hi(w) = , 27
dz( ) Id,»(w) ( )
Xci(w)
H.(w) = . 28
() =708 (8)
They can be arranged into a 6 x 6 matrices
Hy(w) = [Ha1, Ha2, Has, Haa, Has, Hagl,
Hc(w) = [Hcl ,Heo, Hes, Hey, Hes, Hcé]- (29)
It follows from Eq. (17) that
H(w) = T(w)Hg(w). (30)
If the shaker orientations have been selected in such a way that H;(w) is invertible, one finds
T() = He(@)Ha(w) ™. (31)

If more than six excitations are used, we have a set of redundant measurements and the matrices Hy(w) and
H,.(w) have more than six columns. The transmissibility matrix can still be computed from Eq. (30) using the
Moore-Penrose pseudo-inverse:

T(w) = H(w)Hy(w)*, (32)
where the pseudo-inverse of the matrix is defined by
H = HI(HHH™! (33)

(in practice, a singular value decomposition is used, and singular values smaller than a tolerance are treated as
zero and deleted in the calculation of the pseudo-inverse). Once T(w) has been estimated, the transmissibility
in generalized coordinates, T*(w), can be computed by Eq. (20).

6.4.1. Results

Experiments have been conducted in the laboratory and in zero-gravity during the 38th ESA parabolic flight
campaign. For the ground tests, the gravity was compensated by hanging the payload from three soft elastic
springs holding the corners of the upper triangle. The support system includes a mechanism to allow the
adjustment of the spring tension in such a way that the length of the legs are close to their nominal value. The
holding mechanism introduces an additional stiffness which increases the corner frequency of the isolator.
During the parabolic flight tests, the zero-gravity environment can be maintained for only 20s, which reduces
the useful part of the signal to about 15s. With such a short test duration, it is difficult to achieve meaningful
results at low frequencies, and to eliminate noise in frequency bands where the transmissibility is low.
Fortunately, the flight campaign included 90 parabolas which allowed some averaging to be performed.
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Fig. 17(a) shows the experimental vertical transmissibility obtained from data measured with the high-
precision accelerometers during the parabolic flight tests, with and without control. For comparison purposes,
the numerical predictions from Fig. 14 are also shown in dotted lines. The agreement between the experiment
and the analysis is very good. Fig. 17(b) shows the coherence function of the test results. It provides a measure
of the quality of the collected data. Single-axis transmissibilities measured along the horizontal axes are very
similar to those measured along the vertical axes [20]. Fig. 18 shows the Frobenius norm I'(w), as defined by
Eq. (26), and calculated from the measurements of the 12 regular accelerometers. The analytical results are
again shown using dotted lines. The agreement between the experiments and the simulations is also good,
although not as good as in Fig. 17 (which has been obtained with high-precision accelerometers). A detailed
examination of the results shows that the main source of discrepancy between the values of I'(w) computed
from the simulation results and the measured data originates from the non-diagonal terms of the
transmissibility matrix which are more sensitive to noise.

7. Conclusion

This paper summarizes the work conducted at ULB over the past 5 years, to develop an active vibration
isolator for precision payloads. The first part of this paper recalls the principles of active isolation and
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Fig. 17. (a) Experimental transmissibility in the vertical direction, with and without control and (b) coherence function, with and without
control.
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Fig. 18. Frobenius norm I'(w) as defined by Eq. (26), with and without control. The solid lines refer to experiments and the dotted line to
simulation results.

summarizes the main theoretical results for multiple axis decentralized control based on force feedback. The
second part discusses the technology and describes the evolution of the design over the course of the project.
The third part is devoted to the experimental set-up and the performance evaluation; a technique for the
evaluation of the 6 x 6 transmissibility matrix is described. Zero-gravity tests in parabolic flight are also
presented. They show that the isolator is effective in a frequency band between 5 and 400 Hz, with a maximum
attenuation of —40dB in the vicinity of 100 Hz. There is close agreement between the experimental results and
the transmissibility predicted by numerical simulations. It is interesting to note that the performance
improvement with respect to the previous parabolic flight performed 2 years earlier (frequency band:
5-100 Hz, maximum attenuation of —20dB [19]) was achieved solely through mechanical redesign of the leg.
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